PSD-95 protects synapses from β-amyloid

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PSD-93 Attenuates Amyloid-β-Mediated Cognitive Dysfunction by Promoting the Catabolism of Amyloid-β.

Amyloid-β (Aβ) is a key neuropathological hallmark of Alzheimer's disease (AD). Postsynaptic density protein 93 (PSD-93) is a key scaffolding protein enriched at postsynaptic sites. The aim of the present study was to examine whether PSD-93 overexpression could alleviate Aβ-induced cognitive dysfunction in APPswe/PS1dE9 (APP/PS1) mice by reducing Aβ levels in the brain. The level of PSD-93 was ...

متن کامل

Results Psd-95 Shrna

To address the unsolved question of PSD-95 function I used short hairpin RNA (shRNA) to knock-down protein expression. shRNA mediated knock-down of protein expression is one of the established methods exploiting the naturally occurring expression control mechanism known as RNA interference (RNAi). Cells express shRNAs that are complementary to the mRNA they control. The shRNAs are processed and...

متن کامل

Non-Fibrillar Oligomeric Amyloid-β within Synapses.

Alzheimer's disease (AD) is characterized by memory loss, insidious cognitive decline, profound neurodegeneration, and the extracellular accumulation of amyloid-β (Aβ) peptide in senile plaques and intracellular accumulation of tau in neurofibrillary tangles. Loss and dysfunction of synapses are believed to underlie the devastating cognitive decline in AD. A large amount of evidence suggests th...

متن کامل

The postsynaptic NMDA-receptor--PSD-95 signaling complex in excitatory synapses of the brain.

Excitatory synapses of the brain use as neurotransmitter the amino acid glutamate, which is released in packets from the presynaptic terminal. The postsynaptic membrane is specialized for the reception of glutamate signals and the transduction of these signals into the postsynaptic cell. Containing a high concentration of glutamate receptors and associated cytoskeletal and signaling proteins, t...

متن کامل

A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin.

Factors that control differentiation of presynaptic and postsynaptic elements into excitatory or inhibitory synapses are poorly defined. Here we show that the postsynaptic density (PSD) proteins PSD-95 and neuroligin-1 (NLG) are critical for dictating the ratio of excitatory-to-inhibitory synaptic contacts. Exogenous NLG increased both excitatory and inhibitory presynaptic contacts and the freq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cell Reports

سال: 2021

ISSN: 2211-1247

DOI: 10.1016/j.celrep.2021.109194